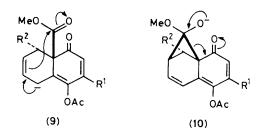

Methoxycarbonyl Shifts in Diels–Alder Adducts of Methoxycarbonyl-1,4-benzoquinones

Mabel U. Akpuaka, Roy L. Beddoes, J. Malcolm Bruce,^{*} Steven Fitzjohn, and Owen S. Mills Department of Chemistry, The University, Manchester M13 9PL, U.K.


Treatment of 4a,5,8,8a-tetrahydro-4a-methoxycarbonyl-1,4-naphthaquinone with acetic anhydride gives the $\Delta^{\text{8a,1}}$ enol acetate, which in the presence of sodium acetate yields 1,4-diacetoxy-5,8-dihydro-6-methoxy-carbonylnaphthalene; the 2- and the 5-methyl, and the 2,5-dimethyl homologues behave analogously.

Regiospecific [1,5]-migrations of acyl groups from the 4aposition of Diels-Alder adducts between acyl-1,4-benzoquinones and acyclic 1,3-dienes occur readily in the presence of acetic anhyride.¹ Because of the much lower signatropic

migratory aptitude of the methoxycarbonyl group,² treatment of the adduct[†] (1a) with acetic anhydride (140 °C, 48 h) affords only the enol acetate^{‡3} (2a) [δ (CDCl₃, 60 MHz) 6.02 (dd, J_{2,3} 10, J_{3,8} 1 Hz, 3-H) and 6.87 (d, J 10 Hz, 2-H)]. However, when (1a) or (2a) are heated (140 °C, 4 h) in acetic anhydride containing 2% of anhydrous sodium acetate, the methoxycarbonyl group migrates to C-6, giving (3a) [m.p. 160.5—161.5 °C; δ (CDCl₃, 60 MHz) 2.31 (s, Ac), 2.34 (s, Ac), 3.42 (m, 5-H₂ + 8-H₂), 3.78 (s, CO₂Me), 6.94 (s, 2-H + 3-H), and 7.07 (m, 7-H)] in 51% yield; the methyl homologue (1b) similarly affords (3b) (m.p. 179—180 °C) in 46% yield.

Selective cleavage (aq. 5% H₂SO₄-MeOH, reflux; 63% yield) of the acetoxy-groups in (**3a**) followed by dehydrogenation (MnO₂⁴-Et₂O, 25 °C, 1 h; 71% yield) gives the 1,4-naphthaquinone (**4a**) [yellow, m.p. 97–98 °C; δ (CDCl₃, 60 MHz) 8.13 (dd, J_1 8, J_2 1.5 Hz, 7-H), 8.35 (d, J 8 Hz, 8-H),

and 8.68 (d, J 1.5 Hz, 5-H)]. Similarly, the methyl homologue (**3b**) gives (**4b**) (yellow, m.p. 149–152 °C).

Dehydrogenation (DDQ-PhH, 80 °C, and MnO_2 -PhH, 20 °C, respectively) (DDQ = dichlorodicyanobenzoquinone) of (3a) and (3b) followed by hydrolysis-methylation (aq. NaOH-Me₂SO₄-dioxan-N₂) affords the corresponding naphthalenes (5; R = H) and (5; R = Me), identical with materials synthesised as described below.

Stobbe condensation (Bu^tOK-Bu^tOH) of 2,5-dimethoxybenzaldehyde with dimethyl succinate, hydrogenation (Pd-C, MeOH) of the olefinic double bond, and cyclisation (P₂O₅-H₃PO₄, 85 °C, 2.5 h; 75% yield) gave the tetralone (6; R = H) (m.p. 132-133 °C). Hydrogenolysis (Pd-C, aq. HCl-MeOH; 51% yield) of the keto-group followed by dehydrogenation (DDQ-PhH, 80 °C; 46% yield) gave the naphthalene (5; R = H) [m.p. 115-117 °C; δ (CDCl₃, 90 MHz) 8.04 (dd, J₁ 9, J₂ 2 Hz, 7-H), 8.24 (d, J 9 Hz, 8-H), and 8.98 (d, J 2 Hz, 5-H)].

A similar sequence starting with 2,5-dimethoxy-4-methylbenzaldehyde gave the tetralone (6; R = Me), but attempted hydrogenolysis of the keto-group failed. However, reduction (NaBH₄-aq. MeOH) gave a mixture⁵ containing, *inter alia*, the lactone (7) [21% yield, m.p. 111—113.5 °C; ν_{max} (CCl₄) 1790 cm⁻¹] and the alcohol (8) (17% yield, m.p. 111—114 °C). Dehydration (TsOH–PhH, 80 °C; 70% yield) (Ts = tosyl) of (8) followed by dehydrogenation (MnO₂–PhH, 20 °C; 77% yield) gave the naphthalene (5; R = Me) [m.p. 98—100 °C; δ (C₆D₆, 80 MHz) 8.08 (d, J 9 Hz, 8-H), 8.32 (dd, J₁ 9, J₂ 2 Hz, 7-H), and 9.45 (d, J 2 Hz, 5-H)]. Opening (TsOH–PhH, 80 °C) of the lactone (7) and methylation (CH₂N₂–Et₂O) of the resulting β , γ -unsaturated carboxylic acid gave the ester, identical with that obtained by dehydration of (8).

The (E)-penta-1,3-diene adducts (1c) and (1d) give (3c) (85% yield, m.p. 126—128 °C) and (3d) (60% yield, m.p. 44—46 °C), respectively, when refluxed with sodium acetate in acetic anhydride. The structure of (3c) was determined by X-ray crystallographic techniques.⁶

The enol acetate (2a) is unchanged after being refluxed in acetic anhydride containing *O*-deuterioacetic acid, but in the presence of sodium acetate the rearrangement product (3a) is formed with some incorporation (m.s.) of deuterium. Deuterium is not incorporated into 1,4-diacetoxy-5,8-dihydronaphthalene under similar conditions, suggesting that the more acidic 8-H in the enol acetates is involved in the rearrangements. Thus internal nucleophilic addition of the 8-anion to the methoxycarbonyl group, as (9), followed by collapse, as shown, of the intermediate (10) with concomitant aromatisation of the dienone ring and subsequent *O*acetylation and prototropic shift of the olefinic double bond into conjugation with the ester function⁷ accounts for the observed products (3). The 'abnormal Michael reaction'⁸ provides a precedent for the migration step.

Diels-Alder reactions between acyl-1,4-benzoquinones and acylic 1,3-dienes afford tetrahydro-1,4-naphthaquinones [as (1)] in which the 4a-acyl groups (formyl, acetyl, benzoyl, and methoxycarbonyl) can now be induced^{1,3,9,10} to migrate regiospecifically to the 2-, 3-, and 6-positions, thus providing inter-

[†] All compounds were racemic; only one enantiomer is depicted.

[‡] All compounds described have analytical and spectroscopic data in accord with the structures assigned to them. Yields are of isolated products.

mediates for the synthesis of anthracyclines. A 4a-cyanogroup will also migrate to C-6.

We thank the Federal Ministry of Education, Nigeria, for a Scholarship (M. U. A.), and the S.E.R.C. for a grant towards X-ray equipment and, together with Glaxo Group Research Ltd. (Greenford), for a C.A.S.E. Studentship (S. F.).

Received, 19th March 1982; Com. 318

References

- F. B. H. Ahmad, J. M. Bruce, J. Khalafy, V. Pejanović, K. Sabetian, and I. Watt, J. Chem. Soc., Chem. Commun., 1981, 166.
- 2 D. J. Field, D. W. Jones, and G. Kneen, J. Chem. Soc., Perkin Trans. 1, 1978, 1050; J. A. Berson and R. G. Salomon, J. Am. Chem. Soc., 1971, 93, 4620; R. A. Baylouni, *ibid.*, p. 4621.

- 3 R. Al-Hamdany, J. M. Bruce, R. T. Pardasani, and I. Watt, J. Chem. Soc., Chem. Commun., 1981, 171.
- 4 J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, and T. Walker, *J. Chem. Soc.*, 1952, 1094.
- 5 Cf. J. S. Swenton, D. K. Anderson, D. K. Jackson, and L. Narasimhan, J. Org. Chem., 1981, 46, 4825.
- 6 R. L. Beddoes, J. M. Bruce, S. Fitzjohn, and O. S. Mills, unpublished work.
- 7 Cf. C. G. Derick and O. Kamm, J. Am. Chem. Soc., 1916, 38, 400.
- 8 E. D. Bergmann, D. Ginsburg, and R. Pappo, Org. React., 1959, 10, 191.
- 9 F. B. H. Ahmad, J. M. Bruce, J. Khalafy, and K. Sabetian, J. Chem. Soc., Chem. Commun., 1981, 169.
- 10 S. C. Cooper and P. G. Sammes, J. Chem. Soc., Chem. Commun., 1980, 633.